
International Journal of Engineering, Science and Mathematics

Vol. 6 Issue 8, December 2017 (Special Issue)
ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com Double-

Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at:

Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

945 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Novel Notion of Hybrid Checkpointing Strategy in Mobile

Distributed Computing System

 Anup Patnaik

M. Vamsi Krishna

 Abstract

 This paper proposes an original and efficient hybrid snapshot (Checkpoint)

protocol on cluster basedmobile distributed system. Preceding, mobile

distributed system has acquired massive attention in recent years due to its

design and features able to monitor and control applications running on the

wireless network efficiently through the fault tolerance methods that offer

additionally consistency and reliability to the flow. Further, previous research

papers on this distributed paradigm have not considered all the potential

overheads incurred, therefore our designed algorithm has made an effort on

this which is the fine blend of coordinated and message logging protocols

provides failure free operation and simple recovery process on failure. Based

on this hybrid mechanism we propose Novel Notion of Hybrid Checkpointing

Strategy (NNHCS) that not only improves the performance of the system with

increasing availability of mobile hosts (MHs), less interruption to MHs due to

single phase coordination but also decreases overheads of coordination

message and piggybacking information. As per our knowledge, this is the first

algorithm will address issues of cluster communication model based

computing system with well integration of mobile agents. The simulation

results obtained from MATLAB tool suggests that performance of the

proposed prototype is independent of communication and computation

overhead with increase of MHs.

Keywords:

Fault tolerance;

Coordinated checkpoint;

Message logging;

Mobile distributed system;

Clustercommunication model.

Author correspondence:

Research Scholar,Department of Computer Science and Engineering,

Centurion University of Technology and Management, Odisha, India

1. Introduction
In classical prospective, checkpointing and recovery scheme implementation is limited to static host

connected in high speed wired network i.e. static distributed systems but with the growing demand on wireless

network due to its several benefits have brought the new era of mobile distributed environment with the advent

of wireless technology. Besides, wireless network connection in the mobile environment as compared to the

wired distributed environment [1- 4] is more fragile and prone to failure, hence the challenges are quite high

toretain the consistency and reliability of the system for its long execution time. Basically, the prototypes being

used in trivial distributed system can’t be applied directly to mobile distributed system due to presence

ofdifferent constraints on this system such as Mobility of MHs, limited battery power on MH, limited wireless

bandwidth, noisy wireless environment, frequent handoff, and limited stable storage in turn make

checkpointing algorithm less effective. Ample of researches [5-7] have been done from different corners on

checkpointing strategy to tolerate faults and continue execution without much acute losses, eventually reached

a conclusion that failure free execution and failure recovery operation using checkpoint strategy definitely put

up better performance considering incurred overheads and latencies than other varied approaches. When we

 Research Scholar, Department of Computer Science and Engineering, Centurion University of Technology and

Management, Odisha, India

HOD, Department of Computer Science and Engineering, Centurion University of Technology and
Management, Odisha, India

http://www.ijmra.us/
http://www.ijmra.us/
http://facultyportal.cutm.ac.in/general_profile.php?xyz=mvamsi@cutm.ac.in

 ISSN: 2320-0294Impact Factor: 6.765

946 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

are considering checkpointing approaches for our proposed prototype then the first and foremost key facts,

those come into mind initially are as how frequently to allow checkpoints to seize processor state, storage

location of different kinds of checkpoint, contents of checkpointing, coordination/application messages and

some incurred overheads. Moreover, two main checkpointing approaches distinctly prevail in this system,

namely Disk based and Diskless checkpointing approaches. Many researches on these approaches stated that

each has its own virtues and drawbacks than the other one, therefore selection of right approach depends on

architecture, requirement, and criterion of the system.
In the Kohafi et al. [8], it was proposed that Diskless checkpoint achieves better performance but less

reliable with additional memory and processors overhead whereas, Disk based checkpoint attains better

reliability for highly critical application with the compromise on the performance side. This summary from the

previous empirical analysis between the former and later approaches paves us the way to choose the disk based

system here, since we are considering critical mobile distributed system in which the need of reliability in this

current juncture is must to have (Figure 1).
Before delve into more on checkpointing strategies [3, 9-11] some of the common definitions used in fault

tolerant though checkpoint province explicated below, we also used those definition in this paper.

Figure 1.Classification of Checkpointing Approaches

Definitions

Lamport's (happens before' relation): If X and Y are two events occurring in the same process and if X

occurs before Y, then X Y and If A is the event of sending a message and B is the event of receiving the

same message in another process then, A  B.

Watchdog Interval: It’s assumed to be fixed interval for the process to checkpoint its state both for intra and

inter cluster communication. During this specific period, all the processes inside and outside cluster makes

their checkpoints consistent w.r.to each other.

Lost Message: Send event of message recorded by the sender process but not recorded by the receiver process

on that watchdog interval (Figure 2).

Figure 2.Example of Lost Message
Orphan Message: Send event of message not recorded by the sender process but recorded by the

receiverprocess on a watchdog interval (Figure 3).

Delayed Message: Send event of message recorded by the sender process but still in communication
channel,not yet received by the receiver process (Figure 4).

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

947 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 3. Example of Orphan Message

Figure 4.Example of Delayed Message

Internal Events: Events happened inside the same process.
External Events: Events happened w.r.to other processes from a process
Application/Computation Messages: Generated by processes to communicate among each other
Coordination/Control Messages: Process initiator communicates with other process to establish

thecoordination
Tentative/Induced Checkpoint: Checkpoint taken when coordination messages by initiator reaches to

theprocesses (Figure 5).
Forced Checkpoint: Checkpoint taken in response to the computation messages to avoid orphan

messages(Figure 5).
Hand off: Handing of disconnected MHs from one location to other location for connection.
Domino Effect: Cascaded rollback of processes to initial state
Avalanche Effect: If any checkpointing schemes continue without termination among the processes based

onthe dependency correlation in any checkpointing interval then it raises the phenomenon of avalanche effect

As our proposed prototype based on usage of stable storage, hence we will focus on disk based distributed

checkpointing here and also skim through some existing similar checkpointing schemes.

Figure 5.Example of Tentative and Forced Checkpoint

Uncoordinated Checkpointing

This scheme does not coordinate the checkpoints between processes rather use specialized algorithms to

determine the set of consistent checkpoints on recovery and keeps most or all of the generated checkpoints on

stable storage since it is not known until restart which set of those checkpoints are required for failure recovery

operation. We may suffer from having useless checkpoints in stable storage and also from domino effect due

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

948 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

to inconsistency, all the processes may get started from the very initial stage. But they do not suffer the

synchronization overhead during failure-free operation as with coordinated protocols.
Biswas and Neogy [12] designed checkpointing protocol for combination movement pattern using

Handoff checkpointing and Periodic checkpointing concepts. Mobility, movement patterns and Handoffs of

MHs are key strength behind this checkpointing and recovery protocol. Based on movement pattern, Handoff

based checkpointing for intercell, Periodic based checkpoint for intracell and again Handoff Based

checkpointing for combination pattern but it was observed that handoff threshold reached longer time than

intercell. This prototype only addressed one type of failure scenario i.e. disconnection of MHs with planned

and unplanned means, concept of Migration checkpoint proposed for planned disconnection which ensures not

incurring any delay in checkpointing. The performance results show that checkpoint initiator only sends to

dependent MHs and MHs save migration checkpoint before planned disconnection only

Coordinated Checkpointing

In this scheme, all the processes are coordinated to form the global consistent state from the local
checkpoints, hence in case of recovery all processes can start from the recent checkpoints stored on global
state. By resorting to this scheme, fault tolerance is free from the domino effect, reducing storage overhead as
only one permanent checkpoint flushed to stable storage in any checkpoint interval and avoid the need of
external garbage collection algorithm to free up the storage space. Apart from these advantages, several pitfalls

are also arose such as it blocks communications while checkpointing process executes, decides whether all
processes or minimum processes participate in synchronization leads to many incurred overheads, and high
latency to output storage. Below highlighted some of the algorithms falling under this category,

Cao and Singal [13] proved that no coordinated checkpoint is non –blocking and forces minimum

number of processes to take checkpoints. But later different research papers stated some minimum process

efficient checkpoints algorithms. Chandy/Lamport [14] algorithm allows a process to checkpoint once it has

received a special marker token from every process in the system. This method requires FIFO communication

channels between all processes to form a consistent state. It is assumed that once the marker has been received

all other messages on that channel can be delayed by the system until the checkpoint is established.
Koo- Toueg’s [15] proposed a minimum process two phase blocking check pointing algorithm for

distributed systems. During the first phase, the checkpoint initiator identifies all process with which it has

communicated since the last checkpoint and subsequently sends them a request. Upon receiving the request,

each process in turn identifies all processes it has communicated since their last checkpoint and sends them a

request, and so on, until no more processes can be identified. During the second phase, all processes identified

in the first phase take a checkpoint. The result is a consistent checkpoint that involves only the participating

processes.Inthis protocol, after a process takes a checkpoint, it cannot send any message until the second phase

terminates successfully.
Awasthi and Kumar [16] proposed a minimum process coordinated checkpointing protocol for mobile

distributed systems, where the number of useless checkpoints and the blocking of processes are reduced using

the probabilistic approach and by computing the tentative minimum set in the beginning. This algorithm is the

first one to combine blocking and non-blocking scheme in one algorithm. Basu et al. [9] addresses the problem

of overhead involved in taking checkpoints and time to recover from a failure in an attempt to make a tradeoff

between efficiency and reliability on the existing algorithms. This algorithm certainly reduces the recovery

cost after failure of a mobile host with the suitable consideration of Handoff threshold. The checkpointing

decision depends not only on the mobility factor but also on the location distance between the mobile support

stations. Moreover the stationary checkpointing scheme makes the algorithm robust against unnecessary

checkpoints while mobile host remains stationary for a considerable amount of time.

Kumar et al. [17] address the mobile computing system issues those holding back the effectiveness of

traditional checkpointing algorithms and presented non-intrusive minimum process synchronous

checkpointing protocol brings the optimization on minimum number of tentative checkpoints, number of

useless forced checkpoints and message overheads for recovery and failure free execution. In order to create

the minimum process checkpointing scheme, the initiator process collects the direct dependency vectors of all

the processes, computes the minimum set and sends the checkpoint request along with the minimum set to the

relevant processes. This algorithm adopted by crashing the height of the checkpointing tree and by reducing

the uncertainty period of processes to minimize the useless induced checkpoints. No blocking of the processes

and no need to send huge data structure for the checkpoint request as it ensures the initiator process keeps exact

CSN of all the processes i.e. most recent permanent checkpoint.
Cao and Singhal [18] introduced the mutable checkpoint to design efficient checkpointing algorithm

which forces the minimum number of processes to take their checkpoints. However, advantage of taking

mutable checkpoint is to get rid of transferring large amount of data to the stable storage at MSSs over the

wireless network. The performance of this algorithm is measured in terms of number of tentative checkpoint,

output commit delay and system message overhead, especially it seems this algorithm needs more system

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

949 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

messages than [19] but crucial point is overhead of system messages much smaller than the overhead of

checkpoints on the stable storage. Simulation result shows that this algorithm significantly reduces the message

overhead as compared to [20] and blocking time is 0 whereas [20] has needless blocking time which

downgrades system performance. Algorithm features suit for heterogeneous environment with high reliability

requirement, failure prone MHs, frequent checkpointing situations.

Quasi-Synchronous Checkpointing

Unlikely coordinated checkpointing, this checkpoint doesn’t exchange any special kind of explicit

coordination message rather it sends all the relevant control information piggybacking with application

message that is called internal synchronization process. Its strategy provides the scheme free from domino

effect using notion of basic and forced checkpoints. Tongchit and Manivannan [7] proposed communication

induced checkpointing protocol where the recovery happens asynchronously through the selective message

logging strategy to handle the messages lost in rollback. Main strength of having communication induced

checkpoint algorithm allows the processes to take checkpoint asynchronously and reduces the number of

useless checkpoints being taken additional checkpoints at appropriate time. Processes can take checkpoints at

any time.i.e. message received by a process can start to take forced checkpoint before processing and protocol

only piggybacks checkpoint sequence number with each control messages. Message replying strategy adopted

in this scheme takes care of delayed, lost and duplicate messages. No orphan messages whatsoever as processes

roll back to consistent global state. Selective message logging scheme comes into play for the messages lost

during recovery and disconnection, reduces message logging overhead as MSS selectively log messages that

need to be replayed after the rollback. Gass and Gupta [21] disclosed one efficient communication induced

checkpointing algorithm along with different forced checkpoint concept than the usual forced checkpoint.

Process fires two events for receiving of application message and taking checkpoint simultaneously. This

algorithm relies concept of finding out the set of globally consistent checkpoint periodically shows many

advantages such as avoid synchronization delay, recovery process is simple as process aware of GCC to

rollback after recovery and GCC having both local and forced checkpoints, the amount of rollback reduces.
Luo and Manivannan [22] presented both Basic and Advanced FINE checkpointing algorithm shown

better performance than other [23]. This Basic FINE (Fully Informed aNd Efficient checkpointing algorithm)

using couple of data structures for ZCF property and TDE-Timestamp ensures that it takes better checkpoint

inducing decision and same time decrease the overhead of piggybacked information. Subsequently Advanced

FINE checkpointing having better/stronger checkpoint inducing condition further reduces overhead of

piggybacked information.

Message Logging checkpointing

It is used to combine checkpointing with logging of non-deterministic events so that logging and replaying the

determinants of message could be used during recovery, further a process can attain the pre failure state in spite

of unavailable of latest checkpointed state. Also, this log based roll back recovery enables the processes to

recover beyond the most recent consistent checkpoint set which is very much useful when we consider our

prototype communication between the inter-clusters. This logging scheme is classified into pessimistic,

Optimistic and causal logging. Chowdhury and Neogy [24] presented a rollback recovery algorithm based on

independent checkpointing and message logging. In this algorithm mobile agents are used to manage the

message logs and checkpoints. When mobile node goes far away from its latest checkpoint then the agents

manage to move the checkpoint and message logs stored in distant Mobile Service Stations to other stations.

Thus recovery time of a mobile node will never exceed a certain threshold. Logging of messages ensures that

only one checkpoint is needed to be stored in persistent storage. As independent checkpointing is used, no

synchronization messages are needed to be exchanged hence saving network bandwidth. Since the applications

for the wireless network typically exchanges lesser number of smaller messages as compared to its wired

counterpart, the message log is not too large for the MSS buffers to store. This algorithm shows better result as

compared other algorithms which use mobile agents in synchronous checkpointing for either Hamiltonian

topology or any topology. Finally, we would like to provide the summarized tabular form of checkpointing

algorithms measured through different parameters as following (Table 1).

Table 1.Summarization of checkpointing algorithms measured through different parameters

 Uncoordinat Coordinate Quasi Pessimistic Other Loggings

Schemes ed Checkpoint Synchronous Logging Checkpoint

Parameters Checkpoint Checkpoint Checkpoint

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

950 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Domino Effect Yes No No No Yes

Avalanche Effect No Yes Yes No No

Process High Low Average High High

Autonomy

Orphan Process Yes No Yes No Yes

Concurrent No Yes Yes No No

Checkpointing &

Multiple Failures

Handling

Recovery

Independently

faulty

process

restored

Rollback to

last set of

checkpoints

Needed large

number of forced

checkpoint

Last set of

Checkpoints

Multiple

checkpoints

considered to

protect

orphan condition

Extent of Potential

Rollback

Unbounded

Global

Checkpoint

State

Several

Checkpoints

Last Checkpoint

Last Checkpoint

or

Previous

checkpoints

Failure Recovery Complex Simple Complex Simple Complex

Computation

Overheads

Checkpointing

overheads,

Large storage

Message

overheads for

coordination

Useless

checkpoints,

Piggybacking of

huge information

and storage

overheads

Message logs

overheads,

Performance

overheads

Message logs

overheads,

Complex

recovery overhead

1.1.Problem Formulation

Our objective is to address transient failures of distributed mobile system with cluster communication model

which stays for short duration time during operation. Being fault in the system, fault tolerance techniques allow

the system to rerun from specific state that’s why it’s highly recommended and worthwhile tohave one effective

and efficient technique. The new proposed prototype has the following characteristics such as Enforces

Minimum Processes, Single Phase Synchronization, Non intrusiveness, and Non-Blocking checkpointing

Protocol. Unlike other blocking and, high checkpointing/message overhead algorithms, our
checkpointing algorithm is free from all such pitfalls as our research efforts are directed towards to overcome

the overhead involved on common practices followed on checkpoint approach. Design of our NNHCA algorithm

is motivated by using coordinated and pessimistic message logging schemes can handle both the intra-cluster

and inter-cluster failure free and failure recovery operations. The crux behind our prototype design is to provide

the communication and computation overhead independent from with increase of MHs, minimum coordination

overhead and also no useless checkpoints at whatsoever.
This manuscript has organized into six different sections based on the assumptions, design &

implementation of algorithm, empirical analysis and future directions. In Section 2, System Model and
Background, in Section 3 Detail elaboration of Novel Notion of Hybrid Checkpointing Protocol (NNHCS)

protocol, Sections 4 more precisely defines Proof of Correctness with Lemma and Theorems, Section 5
Empirical Analysis on Performance with other parallel algorithms, and Section 6 provides conclusion remarks.

2. System Model and Background

We assume there are set of p1, p2…,pn processes concurrently running on different cluster groups as

C1,C2…Ckof mobile distributed system and each cluster has n number of processes. Inside cluster, one

nodepresent as cluster prime primarily facilitates different events happenings inside, other than cluster primes

each node represents a MH(mobile host) running with one process. Execution of the process is modeled with

three kinds of events i.e. Send Event, Receive Event, Internal Event. Lamport’s happened before relationship

can be established between send and receive event for the same message. Every message reaches to the receiver

through the cluster prime.

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

951 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Mobility of MHs, limited battery power on MH, limited wireless bandwidth, noisy wireless environment,

frequent handoff, and limited stable storage on MH induce challenging problems for consistency and reliability

to all types of mobile computing systems through fault-tolerance. Further, to establish the coordination among
the processes running on multiprocessor systems either it will go through the message passing or share memory

of system, but in our prototype the only way for processes to communicate with each other is by passing

messages through a reliable, asynchronous channel with unpredictable but having a finite transmission delays,
hence no messages will be lost and order of the message is also preserved in the channel. The message delivery

of the wired links and wireless links follow strict FIFO communication, no other algorithm shows the urge of
message order in case of the wired communication. Since our prototype focuses on the both the intra-cluster

and inter-cluster communication, we are assuming the FIFO communication channel for inside cluster and

outside cluster.
We also assumed that computation involved in the system, adopted to piece-wise deterministic model in

which a process always produces the same sequence of states in its execution for the same sequence of
message-receiving events. Each process runs inside the processor, no bound to their speed and also in case of

failure, it is assumed that processes fail according to the fail-stop model where a process is permanently
stopped, happened due to a crash without any additional erroneous outcomes. Also system failures are transient

faults and independent, it means that process at same point of time after the recovery won’t fail again. In our

proposed prototype, mobile distributed application follows cluster based communication model where the

system typically grouped into different cluster groups, every cluster group has cluster prime which is of rich

of resources and handles all communication inside and outside its boundary. No separate communication

transport protocol used in cluster prime to deliver intra cluster message and inter cluster messages, rather

follows the order it receives messages. We assumed here that cluster prime nominates the process to be the

initiator for the checkpointing request event under its supervision. Our NNHCA algorithm has to handle both

the intra-cluster and inter-cluster failure free & recovery operations. For all the inter cluster operation we

preferred to use logging scheme than checkpointing scheme, since later scheme involves large amount re-

computation and also coordination message overhead to get started from consistent state during recovery.
Several researches earlier have shown that pessimistic logging has simple log based recovery scheme

than the optimistic logging due to the later logging scheme has substantial chances falling under domino effect,

hence process has to keep multiple checkpoints for failure recovery operation which downsizes system

performance. Especially, no orphan message generated at any point of time, no additional efforts needed for

the ordering of messages delivered in pre failure state possible with pessimistic logging scheme which stays

one of core viewpoint behind this prototype design. Two core techniques are wrapped in designing our

proposed prototype Novel Notion of Hybrid Checkpointing Strategy (NNHCA) explained below.

2.1. Coordinated checkpoint protocol for intra cluster

It is of Minimum Processes, Single Phase Synchronization, Non Intrusiveness, and Non-Blocking

checkpointing Protocol.

Observation 1: Pi, 1≤ i ≤ n, is checkpoint dependent on Pjif one of the following conditions holds true:
(1) Some process Pi, i ≤ i ≤ n, takes a checkpoint before it sends out mi;
(2) Some process Pi, i ≤ i ≤ n−1, takes a checkpoint before it receives mi.

A global checkpoint state is constructed from the set of local checkpoints, one from each process which

is said to be consistent if it does not contain orphan messages i.e. no message is recorded as received in one

process and not yet recorded as sent in another process. Usually message complexity to facilitate coordination

is much higher side most of the coordinated approaches, but in this algorithm we have assured to have O(Nmin)

to establish coordination. Mobile agent namely(Dependency Accumulator) residing in cluster prime acts on

behalf of the process initiator whose sole responsibility is to find the dependency vectors containing those

processes would get checkpointing request message in later stage, so process initiator free from these

computation therefore, it can preserve its resources and computations time. Also we brought new concept in

this algorithm, transformation of checkpoint state one form to another form in order to prevent false

checkpointing, inconsistencies, lost or delayed messages. During the transformation, earlier checkpointing state

loses its relevant data structure and regains new sort of information. This prototype is single phase and

minimum processes participate in the checkpointing event as Dependency Accumulator mobile agent gathers

dependency information on behalf of the process initiator for direct and transitive dependents through recursive

approach from the last permanent checkpoint and makes sure no avalanche effect arises, finally hands over

data to process initiator to send checkpoint request to the processes listed out in Dependency Vector(simple

data structure queue with direct and transitive dependent processes).
Cluster prime has the authority of selecting the process initiator inside the cluster which further gets

dependency vector and sends checkpointing request message to processes. In the ideal scenario if any process

gets the same checkpoint request, it will take primarily the Handshake checkpoint but there may arise some

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

952 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

situation where checkpoint request not received yet but meantime process got application message from other

processes. In such case instead of waiting for request message, it can take essential checkpoint (kind of forced

checkpoint) .Later when process gets the request message from initiator, following actions will be taken place
· No further checkpoint will be taken
· Rejects the Request message from Initiator
· Transmission of essential checkpoint to handshake checkpoint as request message has reached

eventually.
We assumed here that the Handshake checkpoints, not the essential checkpoints get converted to

permanent checkpoint at the end of watchdog interval and later flushed to stable storage.

2.2. Pessimistic Message logging and Synchronous checkpointing recovery protocol for inter cluster

Cluster prime holds the responsibility of delivering messages to MHs i.e. every message routed through

this. We have named our logging scheme as Cluster Prime based Message Logging Scheme (CPMLS) stores

the determinants of message i.e. content of message and order sequence of messages before delivering to the

receiver and before starting off the state intervals of non-deterministic events, therefore it is kind of pessimistic

message logging algorithm. Besides, it has MessageLog_Store matrix data structure maintains the record of

number of messages sent and received by the process to handle lost and delayed messages. During the inter

cluster communication, determinants of non-deterministic events with relevant message information logged

into cluster prime volatile memory and periodically flushed to stable storage so that on recovery, the

determinants of non-deterministic events would be reused and replayed to obtain the failure free state for the

failed process.

3.Novel Notion of Hybrid Checkpointing Protocol (NNHCS)

Our NNHCA proposed checkpointing protocol have the following characteristics.
· Cluster communication Based
· Distributed Checkpoint Initiator
· Selective Checkpointing and rollback
· Periodic Checkpointing
· Dynamic Checkpointing
· Cluster coordinated checkpointing

3.1. How Algorithm Works

Assumption
• All the clusters operate at same speed.

• WatchDog interval to take checkpoint is same in entire cluster groups, otherwise impossible to

handle the synchronization among the clusters when dependency exists through the message passing

Steps to Algorithm Development

1. Cluster Prime nominates the Process Initiator and after nomination, it assigns the dependency list
calculated by Dependency Accumulator mobile agent to process initiator. Dependency Accumulator
mobile agent is residing inside Cluster Prime.

2. Based on the dependency list, process initiator first takes tentative checkpoint then changes its
watchdog Interval, piggybacks this interval along with the request to processes (Dependency List
contains minimum number of processes).

3. When checkpoint request reaches to the processes, what action a process has to take explained below
and which is common for other processes as well

· Process will take handshake checkpoint if it has not taken checkpoint yet in the current
watchdog interval and also watchdog interval of initiator should be higher or same as that
of process.

· Process after taking handshake checkpoint will continue on its external events (send and
receive of messages)

4. When application message reaches to a process, then the following actions to be taken by the
corresponding process and these actions are common across for other processes as well.

· Process has already taken handshake checkpoint in this interval and both process and
 piggyback interval information is same then it treats message as normal message.

· Process hasn’t taken handshake checkpoint still, it means it has not received checkpoint

 request message as of now, hence it takes essential checkpoint to prevent inconsistencies.

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

953 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

· After the essential checkpoint taken, checkpoint request message has reached late to process
then process discards the checkpoint request that reached to it lately and transforms
essential checkpoint to handshake checkpoint.

5. Final Commit - Before watchdog interval ends, all the processes have their handshake checkpoint and

no processes now exist with essential checkpoint, then process initiator’s tentative and other processes
handshake checkpoint converted to permanent checkpoint at the end of the watchdog interval and

flushed to stable storage.
6. Process initiator interacts with processes only once while sending checkpoint request message. In this

algorithm process has high autonomy to take its own checkpoint depending on varied conditions and

later flush contents to stable storage. The benefit of this notion is it prevents multiple interaction, also

multiple interruption to/from process initiator, gains better system performance.

Now we are explaining below how this algorithm handles messages incurred inconsistencies (Figure

6). Instead of maintaining three vectors send, receive and in- transit as in Lalit et al. [25], we have chosen one
N*N matrix and each cell inside contains (mn) where m is number of send messages and n is number of receive

messages. As cluster prime in this design routes messages to host, therefore it calculates this matrix every

watchdog interval.
MessageLog_Store: A matrix (N*N) where Message_Store[i][i] =00(It is considered as internal event

where no send and no receive message occurred. Our prototype treats m, m1, m2, m3 in different ways using

this matrix.

Figure 6.Our protocol functioning

Symbol Notations:

pk, m: Process m of kthcluster
Cw

k, m:Checkpoint taken by process m of kthcluster in w watchdog interval

Secenario-1: Normal message (m)

p1 of cluster k sends message m to same cluster process p0. At this watchdog interval all the values in matrix

zero(no receive and send message before) and this messages reaches on the same interval, hence p0 executes
the message like a normal message

Secenario-2: Delayed message (m1)

After the checkpoints (C1

k,,0C1
k,1) of p0 and p1, the cluster prime calculates Message_Store matrix (Table 2).

Clearly indicates that p1 at this point value 20, it states 2 messages sent and no messages received and same

interpretation for p0 as well.

And the difference is Number message sent by p1to p0 – Number of message received by p0 from p1 i.e. 2-1

=1

Table 2.Message Log _Store matrix at watchdog interval 1(filled values only on the required cells to explainthe
scenarios)

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

954 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

From the above achieved figures, it indicates that m1 is delayed message. Delayed messages have no

right to enforce checkpoint, instead logged into stable storage along with checkpoint which may require for
replaying during recovery.

Secenario-3: Orphan message (m2)
Process p0 sends message m2 top p1.Before any action from p1, the matrix (Table 3) shows that there no

pending messages yet to receive either by p0 or p1 from each other (no delayed messages).Message m2 comes

from odd interval to even interval and no prior deployed message then to keep consistency (both receiving and

sending should fall in same watchdog interval), it forces p1 to take essential checkpoint, hence no orphan

message

Table 3. Message_Store matrix at watchdog interval 2

Secenario-4: Inter cluster message (m2)
Process p2 of cluster k sends message m2 to process p5 of another cluster k-1.Cluster prime maintains similar
matrix for inter cluster messages communication as that of intra cluster and follows same approaches as
mentioned above scenarios for handling inter cluster messages also, additionally CPMLS logs determinants of
message m2 to stable storage but initially these logs are kept in volatile logs, later periodically flushed to stable
storage at the end of watchdog interval. Thus pessimistic message logging neither creates any orphan message
nor involves any complex process on recovery from failure.

Secenario-5: Single Phase, Non-Blocking and Non-Intrusiveness

Single Phase: Cluster prime nominated process initiator sends checkpoint request message to other processesas

calculated by Dependency Accumulator (List contains minimum number of processes which received and sent

messages during this watchdog interval).Interaction by initiator with processes is only once while sending

checkpoint request and in our prototype processes have high autonomy to take checkpoint and later flush

contents to stable storage

Non-Blocking: Our prototype doesn’t suspend any process during its underlying computation. Most of

theearlier algorithms either use marker message or CSN (checkpoint sequence number) to showcase the

algorithm as coordinated non-blocking. As we are partially motivated by Lalit et al [40] algorithm, thus our

prototype will follow same approach piggybacking even or odd interval (watchdog interval) along with each

requests.
Non-Intrusiveness: Due to non-blocking nature of prototype, there is always possible chance that process

mayget messages from other process running with higher checkpoint interval which leads to inconsistencies.

Our prototype’s design and implementation is capable of handling all kind inconsistencies as explained above

on different scenarios.

3.2 Data Structures

Flag_Initiator [P] = by default false, while assigning it becomes true.
Flag_Tentative = Flag that indicates that the process has taken a tentative/induced
checkpoint. Flag_Handhshake = False, by default during initialization
Flag_Essential == False, by default during initialization

m = Application message to by processed by a process
DependencyVector_Dictionary [key, values] = vector of size n
MessageLog_Store matrix = Matrix of size n*n and each cell represents number of sent and received
messages of one process with respect to other process.

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

955 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

ClusterPrime_Disconnected = Size of n, contains the processes which are falling under disconnection

3.3 Algorithm for Inside Cluster

We use the same approach used for coordination as in [25]. Without loss of generality we can assume that all
the processes start on the even WI (Watchdog interval).Piggybacking of application message is definitely light
weighted, since in [25] allows single control bit along with application message indicating either odd or even
watchdog interval to carry. Main difference between our proposed prototypes than algorithm [25] is in the
proposed algorithm, at any point time it needs only Nmin coordination message to complete one watchdog
interval and every watchdog interval is of single iteration i.e. height of checkpoint tree is always one. If we
consider best case scenario of single iteration in the approach [25] then 3× N coordination message required to
complete one watchdog interval which is more than this proposed prototype (Nmin). Further, Best and worst

case scenarios produces same result in our model but not in [25], as it moves to complexity of n
2
 level to handle

coordination.

3.3.1. Checkpointing Request Procedure by Process Initiator (PI)

For each Cluster:

a. Cluster Prime selects the Process Initiator, assigns the Flag_Initiator[PI]= true to process initiator
b. Process initiator(PI) takes Tentative checkpoint and requests the Cluster Prime to assign the

Dependency Vector List for direct and transitive dependencies
c. Now PI Iterates through Dependency Vector List(DependencyVector_Dictionary) after the

assignment , Sends the checkpoint request to the processes
d. Process Pi receives the checkpointing request message from

PI First process calculates the TempStatus for the
checkpoints
TempStatus Process Pi checks no checkpoint taken so far in WatchDog Interval
(Flag_Handhshake = False and Flag_Essential= False) then return True

If (TempStatus = True)
Process takes handshake checkpoint and continues normal
execution Flag_Handhshake = True

Else if (TempStatus = False and Flag_Essential=
True) Process rejects the checkpoint request

Transform the Essential checkpoint to Handshake Checkpoint

e. Dependency Accumulator takes the decision if PI has to send abort message or not.
If No message sent by PI during watch Interval after taking their Handshake

checkpoint Then commits the handshake checkpoint to permanent checkpoint when
timer expires Else

PI will send Abort message to all the processes in DependencyVector_Dictionary to cancel the operation

3.3.2. Process Sends message to other process

a. If Pi sends message to Pj
b. Updates log data structure in Cluster prime
c. Delivers to recipients

3.3.3. Process Receives message from sender process intra

a. Pi receives coordination message
b. If not taken any checkpoint in current watchdog interval

Takes Handshake checkpoint and continue normal operation
Else

 Already have Essential checkpoint then Reject the coordination request
Translate the Essential checkpoint to Handshake checkpoint

c. Pi receives Application Message
d. If not taken any Handshake checkpoint in current watchdog interval

Takes Essential checkpoint and continue normal operation
 If timer of watchdog interval expires and no abort message received from PI

Convert Handshake checkpoint to Permanent checkpoint
e. Else if timer of watchdog interval expires and abort message received from PI

Cancel the operation and Find the latest checkpoint from global consistent state

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

956 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

f. Else

 Execute normal execution as when message arrives

3.3.4. Recovery (Handoff Checkpointing Procedure for Disconnected MH)

a. Before disconnection of MH, it hand overs all the relevant data to Cluster Prime
b. During it disconnection, any coordination request /application message came, and then Cluster

primes Clones new process with the data of disconnected MG.

c. In Reconnection, Disconnected MH sends signal to cluster prime to identify the process
d. If Disconnected MH Identified for connection then assigns the current state cloned process to it

and aborts the functioning of cloned process as it is no longer requited now to function

3.4. Algorithm for Outside to Cluster

3.4.1. Process Sends message to other process (Only Application message can be sent, no

coordination message)

a. If Pi sends message to Pj
Update log data structure in current Cluster prime and Delivers to
 recipients to different Cluster group

b. If (application message belongs to current interval)
Receipt cluster group delivers it to process
Otherwise rejects the message

3.4.2.Process Receives message from sender process

a. No chance to get coordination message one cluster to another cluster, hence always application
messages from other clusters to current cluster

b. IF(Process Pi receives inter cluster message)
 Process logs the Message and non-determinant events in the current process memory
c. If timer of watchdog interval expires and no abort message received from PI of Sender

Convert Handshake checkpoint to Permanent checkpoint
d. Else if timer of watchdog interval expires and abort message received from PI of Sender Cancel

the operation and Find the latest checkpoint from pessimistic message logging information to
replay and rerun the determinant events with logged messages

e. Else
 Execute normal execution as when message arrives

3.4.3. Recovery (Handoff Checkpointing Procedure for Disconnected MH)

a. Before disconnection of MH, it hand overs all the relevant data to current Cluster Prime
b. During it disconnection, any coordination request /application message came, and then current

Cluster Prime Clones new process assigned with data of disconnected MH.
c. In Reconnection, Disconnected MH sends signal to cluster prime of new cluster group to identify

the process
d. Cluster prime of new cluster group verifies in its own disconnected list of processes and if not then

broadcast the message to other cluster groups
e. If Disconnected MH identified for connection by any cluster group then assigns the current state

cloned process to requested group and abort the functioning of cloned process as it is no longer
requited now to function inside this group now.

4.Proof of Correctness

Theorem 1: Failure Free operation at any point of time on whole system has Global Consistent

Checkpoint State.

Proof: The watchdog interval intra and inter cluster will remain the same.Without loss of generality,

let’sassume that orphan messages exist in the watchdog interval which is applicable to inside and outside to a

cluster group. A Process initiator of cluster group sends the checkpoint request to all the processes which it

depends directly and indirectly, so processes which received the checkpoint request message have taken

Handshakecheckpoint. In our prototype, the height of checkpoint tree is always one level. It not only makes

sure processes of direct dependent PI part of minimum set but also covers the dependent processes of PI’s

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

957 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

direct dependentprocesses and same recursive procedure continues till the minimum set is finalized. If any

process received message but not received request message, the same process can take essential checkpoint

and later coverts to handshake checkpoint Hence we come to conclusion that there is no point of time where

orphan message are present, so the assumption on beginning is wrong. This prototype will always provide the

consistent checkpoint set.

Lemma 1: A process Pi cannot be a member of minimum set, if it has not sent or received a message

in its current watchdog interval.

Proof: Without loss of generality, let’s assume thatPihas sent some message to Pjand both not in part
ofminimum set. As per the Lamport's definition, happens before relation exists between processes only when
they send or receive application messages. This relationship on series of processes helps to find out dependency
vector for process initiator. Dependency accumulator keeps those processes which followed Lamport's

definition in the current watchdog interval. Surely Pi and Pj will have their place inside dependency vector list.

Hence assumption is incorrect and minimum set contains {Pi, Pj }.

Lemma 2: Minimum Number of process taking checkpoints during coordination

Proof: As the theorem1 proves that participating processes which selected based received messages sincefrom

last global checkpoint and mobile agent Dependency accumulator calculates the dependency vector on behalf

of the process initiator. No other processes out of this dependency vector list ever receive any kind of

checkpoint request message. This ensures that minimum processes always in attention during coordination.

Lemma 3: Algorithm is non-blocking and single phase coordination strategy

Proof: All the processes in the system without any wait, first it will take essential checkpoint if

receivedapplication messages if no taken any checkpoint so far, then continues the normal operation. At any

point of time during watchdog interval it receives the coordination message then it rejects the message as it has

already holding checkpoint without any loss of any consistencies and transform the essential to handshake

checkpoint. During watchdog interval only once process initiator sends checkpoint request. If the time expires

processes automatically saves the checkpoints to stable storage.

Theorem 2: If a MH on one cluster hands off to another cluster during planned disconnection and then

in reconnect then Inter and intra cluster groups have consistent state constructed on recovery

Proof: As theorm1 proves of global consistent checkpoint cut at any point of time over the system, itmeans to

both intra and inter cluster. Without loss of generality, we will consider two clusters C1 and C2 and watchdog

interval w1.Suppose P1 in C1 got disconnected, before going to disconnection mode it sends all the
local data of MH to the cluster prime of C1. Further, on behalf of P1, C1 clones new process for the
disconnected MH if it receives any response from other MHs. If any message or request comes for the

disconnected processes the cloned process will act right away. Now during reconnection it signals to C2, first

and foremost the C2 cluster checks its own disconnected list if not then it broadcast messages to other cluster

groups. While receiving request by C1 from C2 , C1 sends recent state and all the relevant data to C2.There is
no point of time on whole system that this hand off process may go faulty which means cloned process is smart
enough to maintain checkpoint state as like other processes in that cluster.

Theorem 3: The Watchdog interval is defined with finite time, later finishes at certain point where

checkpoint algorithm ends successfully.

Proof: As per the Lemma 2, minimum process set is generated before sending checkpoint request. Nowthe

initiator sends the request to the processes to take checkpoint. In ideal scenarios with no faulty process noticed,

every checkpoint request received processes takes handshake checkpoint and carry on with their normal

operation during the interval. When watchdog interval ends then transform handshake to permanent

checkpoint, hence the algorithm completes successfully with no faults and terminates in the finite time period.

5.Performance Analysis

5.1. Comparison with Existing Protocol

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

958 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

In this section, we review previously proposed algorithms related to our checkpointing algorithm (Table 4).
Where,

Nmin: Minimum number of processes required to take

checkpoint. Nbroad: Message broadcasted to these
numbers of processes
N: total number of processes involved
Ndep: Number of process on which a process depends
Cost (Broadcast): Cost of broadcasting a message to all (N) processes in
the system. Cost (Wireless): Cost of sending a message from one process to
another process. Wckpt: The checkpointing time. This time includes the
time to save the checkpoint on stable storage.

Table 4.Comparison of Different Algorithms based on Certain Crucial Criterion

Algorithms Blocking Number of Number of Coordinate Message Control

 Time Checkpoints Coordination Transmission Cost Message size

 Phases

Koo-Toueg[15] Nmin × Nmin Three Phases 3× Nmin ×Ndep× (Cost 3× Nmin × Ndep

 Wckpt (Wireless))

Cao-Singhal[11]

0

Nmin

Three Phases

≈ 2× Nmin × (Cost
(Wireless)) +min(Nmin×
(Co st (Wireless)),
Cost (Broadcast))

2× Nmin + Ndep

Elnozahy et al.
[26] 0

N

Two Phases

2× Cost (Broadcast)+
N× Cost(Wireless)

2×Nbroad +N

Kumar et al. [27] 0
Nmin Three Phases 3× Nmin × Cost (Wireless) 3* Nmin

Lalit et al. [25] 0 N Three Phases
2× Cost (Broadcast)+ N×
Cost 2× Nbroad + N

 (Wireless)

Praveen et al.
[10] 0

Nmin +

Nindu Five Phases

N× Cost (Wireless)+2×
Nmin
× C(Wireless)+2×
C(Broadcast)

N+2×Nmin+2

× Nbroad

Gupta et al. [6] 0 Nmin Single Phase Nmin ×Cost (Wireless) Nmin

Our Algorithm 0 Nmin Single Phase Nmin × Cost (Wireless) Nmin

(NNHCA)

5.2.Simulation Results

 We have used Matlab simulator for evaluating performance of our algorithm and the setup structure
considers 10 MHs present on each clusters and total of 5 clusters, having both wireless and wired interface.

Through the wired interface clusters are connected with each other with 20Mbps communication link whereas

clusters and MH connected using 4Mbps.
 MHs may get disconnected during the execution then its reconnection, message delivery rerouted solely

controlled by cluster prime, always having 50% probability to for disconnection and 50% probability for

mobility to other cluster. Primary parameters that we decided for the basis of comparison as follows

Number of useless checkpoints

 The number of useless checkpoints in our case is zero at any time during the system. Transformation from

essential checkpoints to induced checkpoint not only prevents the inconsistencies but also number of useless

checkpoints. In case of higher message sending rate, the height of checkpoint tree remains the same but in other

algorithms it increases exponentially which affects the system performance (Figure 7).

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

959 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 7.Number of Useless Checkpoints vs. Sending Rate (Message Sending Rate)

Control Messages and Coordination Transmission Cost

 As compared to other algorithm, our prototype number of messages required for coordination increases

gradually with increased number of processes as per results provided in the Table 2, hence outperforms other

algorithm.

Figure 8.Number of Control Messages vs. Number of Processes

Figure 9. Coordination Cost with Delay vs. Number of Processes

In our algorithm, the height of checkpoint tree at any watchdog interval is one which is minimum, less

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

960 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

chance to have any kind of computation and control message transmission delay (Figure 8). But in case Gupta
et al. [6], checkpoint tree height increases with number of processes increases leads to checkpoint request
overhead and
computation of dependency overhead happens every stage hence the approach will go through significant

delay than our approach even if the order of control message size for both are O(Nmin) (Figure 9).

From the above analysis we have drawn some multi fold advantages of our proposed algorithm as
compared with others as follows:

• The algorithm requires only one checkpoint per process at any time to be present in the system. The
checkpoint is stored locally in the MH’s local storage initially, only single phase coordination of

processes to the initiator required to commit the output to the stable storage. This reduces

checkpointing overhead on MH.

• The algorithm forces only a few processes to take checkpoints and to roll back on an error Recovery.
• Fine blend of coordinated checkpointing and pessimistic message logging handles failure free and

failure recovery operations both in intra and inter clusters.

• High availability of disconnected MHs through new concept of cloned processes.

• Checkpointing coordination message overhead minimized in case of failure free operation

Unlike other checkpointing algorithm, this prototype doesn’t enforce all the processes to take checkpoint.

6. Conclusions

Design of this protocol Novel Notion of Hybrid Checkpointing Strategy (NNHCS) Protocol is motivated by

hybrid checkpoint(coordinated and message logging checkpoints) in cluster based application that require

consistent global checkpoint with less coordination cost and application message overheads. This proposed

algorithm is doing exceedingly well to increase the availability of MHs at any point of time, since cloned

process on behalf of disconnected processes running inside the current cluster. System performance is enhanced

through the high availability of MHs, lower interruption of MH due to single phase and reducing useless

checkpoints. Apart from the exceeding well performance with compare to the overheads, still we are skeptical

that it may bring into contention of stable storage i.e. staggered checkpoint. Further, we are carrying now on

the profound investigation to shun the contention issues.

References

[1]. Awasthi, L.K., Mishra, M. and Joshi, R.C, "A Weighted Checkpointing Protocol for Mobile

Distributed System," International Journal of ad hoc and ubiquitous Computing, vol.5(3), pp.137-

149, 2010.
[2]. Kumar, L., Mishra, M. and Joshi, R.C, "Low Overhead Optimal Checkpointing for Mobile

Distributed System," Proceedings 19th International Conference on Data Engineering, 2003, pp. 686-
6883.

[3]. Kumar, P., Gupta, P. and Solanki, A. K, "Dealing with Frequent Aborts in Minimum-process
CoordinatedCheckpointing Algorithm for Mobile Distributed Systems," International Journal of
Computer Applications, vol.3(10), pp.7-12, 2010.

[4]. Kumar, P. and Khunteta, A, "Anti-message Logging based Coordinated Checkpointing Protocol

forDeterministic Mobile Computing Systems," International Journal of Computer Applications,

vol.3(1), pp.22-27, 2010.
[5]. Cao, J., Chen, Y., Zhang, K. and He, Y, "Checkpointing in Hybrid Distributed Systems. Proc. of the

7thinternational Symposium on Parallel Architectures," Algorithms and Networks (ISPAN’04), Hong

Kong,China, 2004, pp.136-141.
[6]. Gupta, B., Rahimi, S. and Liu, Z, "A new high Performance Checkpointing Approach for Mobile

ComputingSystems," International Journal of Computer Science and Network Security, vol.6(5B),

pp.95–104, 2006.
[7]. Tantikul, T. and Manivannan, D, "A Communication-Induced Checkpointing and Asynchronous

RecoveryProtocol for Mobile Computing Systems," Proceedings of the Sixth International
Conference on Parallel andDistributed Computing Applications and Technologies (PDCAT’05),
2005, pp. 70-74.

[8]. Kofahi, N.A., Bokhitan, S.AI. and AI-Nazer, A, "On Disk based and Diskless Checkpointing for
parallel andDistributed Systems : An Empirical Analysis," Information Technology Journal, vol.4(4),
pp.367-376, 2005.

[9]. Basu, S., Palchaudhuri, S., Podder, S. and Chakrabarty, M, "A Checkpointing and Recovery

Algorithm Basedon Location Distance, Handoff and Stationary Checkpoints for Mobile Computing

Systems," InternationalConference on Advances in Recent Technologies in Communication and

http://www.ijmra.us/

 ISSN: 2320-0294Impact Factor: 6.765

961 International Journal of Engineering, Science and Mathematics

http://www.ijmra.us, Email: editorijmie@gmail.com

Computing, 2009, pp.56-62.
[10]. Kumar, P., Kumar, L., Chauhan, R.K. and Gupta, V. K, "A Non-Intrusive Minimum Process

SynchronousCheckpointing Protocol for Mobile Distributed Systems," Proceedings of IEEE

ICPWC-2005, January 2005.
[11]. Cao, G. and Singhal, M, "Mutable Checkpoints: A New Checkpointing Approach for Mobile

Computing," IEEETrans. on Parallel and Distributed Systems, vol.12(2), pp.157-172, 2001.
[12]. Biswas, S. and Neogy, S. "A Mobility Based Checkpointing Protocol for Mobile Computimg

System,"International Journal of Computer Science and Information Technology (IJCSIT), vol.2(1),
pp.135-151, 2010.

[13]. Cao, G. and Singhal, M, "On the Impossibility of Min-Process Non-Blocking Checkpointing and An

EfficientCheckpointing Algorithm for Mobile Computing Systems," International Conference on

Parallel ProcessingIEEE, 1998, pp.37–44.

[14]. Chandy, K. M. and Lamport, L, "Distributed Snapshots, Determining Global State of
Systems,"ACMTransaction on Computing Systems, vol.3(1), pp.63-75, 1985.

[15]. Koo, R. and Toueg, S, "Checkpointing and Rollback-Recovery for Distributed Systems," IEEE Trans.

onSoftware Engineering, 1987, pp. 23-31.
[16]. Awasthi, L.K. and Kumar, P, "A synchronous checkpointing protocol for mobile distributed

systems:probabilistic approach," International Journal of Information and Computer Security,

vol.1(3), pp.298– 314, 2007.
[17]. Ssu, K.F., Yao, B., Fuchs, W. K. and Neves, N. F. "Adaptive Checkpointing with Storage

Management forMobile Environments," IEEE Transactions on reliability, vol.48(4), pp.315-324,

1999.
[18]. Cao, G. and Singhal, M. "A New Checkpointing Approach for Mobile Computing Systems,"IEEE

Transactionson Parallel and Distributed Systems, vol.12(2), pp.157-172,2001.

[19]. Gupta, B., Rahimi, S. and Ahmad, R. "A New Roll-Forward Checkpointing / Recovery Mechanism

for ClusterFederation," International Journal of Computer Science and Network Security, vol.6(11),

pp. 292-297, 2006.
[20]. Kim, H., Yeom, H.Y., Park, T. and Park, H. "The Cost of Checkpointing, Logging and Recovery for

the MobileAgent Systems," In proceeding of: Dependable Computing, DOI:10.1109/PRDC.2002.
[21]. Gass, R.C. and Gupta, B. "An Efficient Checkpointing Scheme for Mobile Computing

Systems,"EuropeanSimulation Symposium, 2001, pp.1-6.

[22]. Luo, Y. and Manivannan, D. "FINE: A Fully Informed and Efficient Communication-Induced

CheckpointingProtocol," IEEE Third International Conference on Systems (icons 2008), 2008, pp.16

-22.
[23]. Helary, J.M., Mostefaoui, A., Netzer, R. and Raynal, M. "Communication-based prevention of

uselesscheckpoints in distributed computations," Distributed Computing, vol.13(1), pp. 29–43, 2000.
[24]. Chowdhury, C. and Neogy, S. "Checkpointing Using Mobile Agents for Mobile Computing

System," International Journal of Recent Trends in Engineering, vol.1(2), pp.26-29,2009.
[25]. Awasthi, L.K., Mishra, M. and Joshi, R.C. "An efficient coordinated checkpointing Appraoches for

DistributedComputing Systems with Reliable Channels," International Journal of Computers and

Applications, DOI: 10.2316/Journal.202.2012.1.202-2118.
[26]. Elnozahy, E.N., Johnson, D.B. and Zwaenepoel, W. "The performance of consistent check pointing,"

Proc. 11thSymp. On Reliable Distributed Systems, 1992, pp. 86–95.
[27]. Kumar, S., Chauhan, R.K. and Kumar, P. "A Low Overhead minimum process Global Snapshot

CollectionAlgorithm for Mobile Distributed Systems," The International Journal of Multimedia and
its Application, vol.2(2), pp.12-30, 2010.

http://www.ijmra.us/

